网上有关“为什么采用I调节器及PI调节器能实现无静差?”话题很是火热,小编也是针对为什么采用I调节器及PI调节器能实现无静差?寻找了一些与之相关的一些信息进行分析,如果能碰巧解决你现在面临的问题,希望能够帮助到您。
以前做过PID的现场调节,其实只要把PID的功能有个清晰的了解,就可以在具体的PID的调节上形成思路。另外调节分为理论计算整定法和工程整定方法,你所说的现实中老师傅所用的方法一般成为工程整定方法,这个经验上还比较实用。
◎◎◎◎◎◎◎◎◎◎◎◎◎◎◎◎◎◎◎◎◎◎
比例(P)控制
比例控制是一种最简单的控制方式。其控制器的输出与输入误差信号成比例关系。当仅有比例控制时系统输出存在稳态误差(Steady-state error)。
积分(I)控制
在积分控制中,控制器的输出与输入误差信号的积分成正比关系。对一个自动控制系统,如果在进入稳态后存在稳态误差,则称这个控制系统是有稳态误差的或简称有差系统(System with Steady-state Error)。为了消除稳态误差,在控制器中必须引入“积分项”。积分项对误差取决于时间的积分,随着时间的增加,积分项会增大。这样,即便误差很小,积分项也会随着时间的增加而加大,它推动控制器的输出增大使稳态误差进一步减小,直到等于零。因此,比例+积分(PI)控制器,可以使系统在进入稳态后无稳态误差。
微分(D)控制
在微分控制中,控制器的输出与输入误差信号的微分(即误差的变化率)成正比关系。自动控制系统在克服误差的调节过程中可能会出现振荡甚至失稳。其原因是由于存在有较大惯性组件(环节)或有滞后(delay)组件,具有抑制误差的作用,其变化总是落后于误差的变化。解决的办法是使抑制误差的作用的变化“超前”,即在误差接近零时,抑制误差的作用就应该是零。这就是说,在控制器中仅引入 “比例”项往往是不够的,比例项的作用仅是放大误差的幅值,而目前需要增加的是“微分项”,它能预测误差变化的趋势,这样,具有比例+微分的控制器,就能够提前使抑制误差的控制作用等于零,甚至为负值,从而避免了被控量的严重超调。所以对有较大惯性或滞后的被控对象,比例+微分(PD)控制器能改善系统在调节过程中的动态特性。
-------------------------------------------
PID是比例,积分,微分的缩写.
比例调节作用:是按比例反应系统的偏差,系统一旦出现了偏差,比例调节立即产生调节作用用以减少偏差。比例作用大,可以加快调节,减少误差,但是过大的比例,使系统的稳定性下降,甚至造成系统的不稳定。
积分调节作用:是使系统消除稳态误差,提高无差度。因为有误差,积分调节就进行,直至无差,积分调节停止,积分调节输出一常值。积分作用的强弱取决与积分时间常数Ti,Ti越小,积分作用就越强。反之Ti大则积分作用弱,加入积分调节可使系统稳定性下降,动态响应变慢。积分作用常与另两种调节规律结合,组成PI调节器或PID调节器。
微分调节作用:微分作用反映系统偏差信号的变化率,具有预见性,能预见偏差变化的趋势,因此能产生超前的控制作用,在偏差还没有形成之前,已被微分调节作用消除。因此,可以改善系统的动态性能。在微分时间选择合适情况下,可以减少超调,减少调节时间。微分作用对噪声干扰有放大作用,因此过强的加微分调节,对系统抗干扰不利。此外,微分反应的是变化率,而当输入没有变化时,微分作用输出为零。微分作用不能单独使用,需要与另外两种调节规律相结合,组成PD或PID控制器。
◎◎◎◎◎◎◎◎◎◎◎◎◎◎◎◎◎◎◎◎◎◎
现实中老师傅所用的方法一般成为工程整定方法,它主要依赖工程经验,直接在控制系统的试验中进行,且方法简单、易于掌握,在工程实际中被广泛采用。PID控制器参数的工程整定方法,主要有临界比例法、反应 曲线法和衰减法。三种方法各有其特点,其共同点都是通过试验,然后按照工程经验公式对控制器参数进行整定。但无论采用哪一种方法所得到的控制器参数,都需 要在实际运行中进行最后调整与完善。现在一般采用的是临界比例法。利用该方法进行 PID控制器参数的整定步骤如下:
(1)首先预选择一个足够短的采样周期让系统工作;
(2)仅加入比例控制环节,直到系统对输入的阶跃响应出现临界振荡,记下这时的比例放大系数和临界振荡周期;
(3)在一定的控制度下通过公式计算得到PID控制器的参数。
在实际调试中,只能先大致设定一个经验值,然后根据调节效果修改。
对于温度系统:P(%)20--60,I(分)3--10,D(分)0.5--3
对于流量系统:P(%)40--100,I(分)0.1--1
对于压力系统:P(%)30--70,I(分)0.4--3
对于液位系统:P(%)20--80,I(分)1--5
网络鲁棒性研究
①原理性误差为了跟踪输出量的期望值和由于外扰动作用的存在,控制系统在原理上必然存在的一类稳态误差。当原理性稳态误差为零时,控制系统称为无静差系统,否则称为有静差系统。原理性稳态误差能否消除,取决于系统的组成中是否包含积分环节(见控制系统的典型环节)。
②实际性误差系统的组成部件中的不完善因素(如摩擦、间隙、不灵敏区等)所造成的稳态误差。这种误差是不可能完全消除的,只能通过选用高精度的部件,提高系统的增益值等途径减小。
扩展资料
在积分控制中,控制器的输出与输入误差信号的积分成正比关系。对一个自动控制系统,如果在进入稳态后存在稳态误差,则称这个控制系统是有稳态误差的或简称有差系统(System with Steady-state Error)。
为了消除稳态误差,在控制器中必须引入“积分项”。积分项对误差取决于时间的积分,随着时间的增加,积分项会增大。
这样,即便误差很小,积分项也会随着时间的增加而加大,它推动控制器的输出增大使稳态误差进一步减小,直到等于零。因此,比例+积分(PI)控制器,可以使系统在进入稳态后无稳态误差。
百度百科-稳态误差
鲁棒是Robust的音译,也就是健壮和强壮的意思。它是在异常和危险情况下系统生存的关键。比如说,计算机软件在输入错误、磁盘故障、网络过载或有意攻击情况下,能否不死机、不崩溃,就是该软件的鲁棒性。所谓“鲁棒性”,是指控制系统在一定(结构,大小)的参数摄动下,维持某些性能的特性。根据对性能的不同定义,可分为稳定鲁棒性和性能鲁棒性。以闭环系统的鲁棒性作为目标设计得到的固定控制器称为鲁棒控制器。鲁棒性原是统计学中的一个专门术语,20世
通信网络的鲁棒性
纪70年代初开始在控制理论的研究中流行起来,用以表征控制系统对特性或参数摄动的不敏感性。
在实际问题中,系统特性或参数的摄动常常是不可避免的。产生摄动的原因主要有两个方面,一个是由于量测的不精确使特性或参数的实际值会偏离它的设计值(标称值),另一个是系统运行过程中受环境因素的影响而引起特性或参数的缓慢漂移。因此,鲁棒性已成为控制理论中的一个重要的研究课题,也是一切类型的控制系统的设计中所必须考虑的一个基本问题。对鲁棒性的研究主要限于线性定常控制系统,所涉及的领域包括稳定性、无静差性、适应控制等。原理鲁棒性问题与控制系统的相对稳定性(频率域内表征控制系统稳定性裕量的一种性能指标)和不变性原理(自动控制理论中研究扼制和消除扰动对控制系统影响的理论)有着密切的联系,内模原理(把外部作用信号的动力学模型植入控制器来构成高精度反馈控制系统的一种设计原理)的建立则对鲁棒性问题的研究起了重要的推动作用。当系统中存在模型摄动或随机干扰等不确定性因素时能保持其满意功能品质的控制理论和方法称为鲁棒控制。早期的鲁棒控制主要研究单回路系统频率特性的某些特征,或基于小摄动分析上的灵敏度问题。现代鲁棒控制则着重研究控制系统中非微有界摄动下的分析与设计的理论和方法。
控制系统的一个鲁棒性是指控制系统在某种类型的扰动作用下,包括自身模型的扰动下,系统某个性能指标保持不变的能力。对于实际工程系统,人们最关心的问题是一个控制系统当其模型参数发生大幅度变化或其结构发生变化时能否仍保持渐近稳定,这叫稳定鲁棒性。进而还要求在模型扰动下系统的品质指标仍然保持在某个许可范围内,这称为品质鲁棒性。鲁棒性理论目前正致力于研究多变量系统具有稳定鲁棒性和品质鲁棒性的各种条件。它的进一步发展和应用,将是控制系统最终能否成功应用于实践的关键。
在数字水印技术中,鲁棒性是指在经过常规信号处理操作后能够检测出水印的能力;针对图像的常规操作包括空间滤波、有损压缩、打印与复印、几何变形等;
编辑本段内容控制系统在其特性或参数发生摄动时仍可使品质指标保持不变的性能。鲁棒性是英文robustness一词的音译,也可意译为稳健性。鲁棒性原是统计学中的一个专门术语,70年代初开始在控制理论的研究中流行起来,用以表征控制系统对特性或参数摄动的不敏感性。在实际问题中,系统特性或参数的摄动常常是不可避免的。产生摄动的原因主要有两个方面,一个是由于量测的不精确使特性或参数的实际值会偏离它的设计值(标称值),另一个是系统运行过程中受环境因素的影响而引起特性或参数的缓慢漂移。因此,鲁棒性已成为控制理论中的一个重要的研究课题,也是一切类型的控制系统的设计中所必需考虑的一个基本问题。对鲁棒性的研究主要限于线性定常控制系统,所涉及的领域包括稳定性、无静差性、适应控制等。鲁棒性问题与控制系统的相对稳定性和不变性原理有着密切的联系,内模原理的建立则对鲁棒性问题的研究起了重要的推动作用。
编辑本段结构渐近稳定性以渐近稳定为性能指标的一类鲁棒性。如果控制系统在其特性或参数的标称值处是渐近稳定的,并且对标称值的一个邻域内的每一种情况它也是渐近稳定的,则称此系统是结构渐近稳定的。结构渐近稳定的控制系统除了要满足一般控制系统设计的要求外,还必须满足另外一些附加的条件。这些条件称为结构渐近稳定性条件,可用代数的或几何的语言来表述,但都具有比较复杂的形式。结构渐近稳定性的一个常用的度量是稳定裕量,包括增益裕量和相角裕量,它们分别代表控制系统为渐近稳定的前提下其频率响应在增益和相角上所留有的储备。一个控制系统的稳定裕量越大,其特性或参数的允许摄动范围一般也越大,因此它的鲁棒性也越好。业已证明,线性二次型(LQ)最优控制系统具有十分良好的鲁棒性,其相角裕量至少为60°,并确保1/2到∞的增益裕量。已经成为软件性能指标之一。
编辑本段结构无静差性以准确地跟踪外部参考输入信号和完全消除扰动的影响为稳态性能指标的一类鲁棒性。如果控制系统在其特性或参数的标称值处是渐近稳定的且可实现无静差控制(又称输出调节,即系统输出对参考输入的稳态跟踪误差等于零),并且对标称值的一个邻域内的每一种情况它也是渐近稳定和可实现无静差控制的,那么称此控制系统是结构无静差的。使系统实现结构无静差的控制器通常称为鲁棒调节器。用方程 N1(D)f(t)=0 N2(D)z0(t)=0
表示加于受控系统的扰动f(t)和参考输入z0(t)的动态模型,式中为微分算子,N1(D)和 N2(D)为D的多项式。用k1(s)和k2(s)(s为复数变量)分别表示 N1(D)和N2(D)的最小多项式,而用k(s)表示k1(s)和k2(s)的最小公倍式。那么存在鲁棒调节器可使受控系统 T(s)z=U(s)u+M(s)f
y=z
(见多变量频域方法)实现结构无静差的充分必要条件是,控制向量u的维数大于输出向量y的维数,同时对代数方程k(s)=0的所有根si(i=1,2,…,p)矩阵U(si)为满秩。对于可实现结构无静差的受控系统,一个动态补偿器P(s)ξ=z0- z
u=R(s)ξ
(ξ为补偿器的状态向量)能构成为它的鲁棒调节器的充分必要条件是,矩阵P(s)的每一个元都可被k(s)除尽,同时由受控系统和动态补偿器组成的闭环控制系统是结构渐近稳定的。在采用其他形式的数学描述时,鲁棒调节器和结构无静差控制系统的这些条件的表述形式也不同。鲁棒调节器在结构上有两部分组成,一部分称为镇定补偿器,另一部分称为伺服补偿器。镇定补偿器的功能是使控制系统实现结构渐近稳定。伺服补偿器中包含有参考输入和扰动信号的一个共同的动力学模型,因此可实现对参考输入和扰动的无静差控制。对于呈阶跃变化的参考输入和扰动信号,它们共同的动力学模型是一个积分器;对于呈斜坡直线变化的参考输入信号和呈阶跃变化的扰动信号,其共同的动力学模型是两个积分器的串接。
带有状态观测器的系统的鲁棒性 一般而言,在控制系统中引入状态观测器会使它的鲁棒性变坏,因此应尽可能避免。对于必须采用状态观测器的控制系统,当受控系统为最小相位系统时,可通过合理地设计观测器而使控制系统保持较好的鲁棒性。其原则是把观测器的一部分极点设计成恰好与所观测系统的零点相对消,而观测器的其他极点在满足抗干扰性要求的前提下应使其尽可能地远离虚轴。
关于“为什么采用I调节器及PI调节器能实现无静差?”这个话题的介绍,今天小编就给大家分享完了,如果对你有所帮助请保持对本站的关注!
本文来自作者[千旋]投稿,不代表里驹号立场,如若转载,请注明出处:https://hnqlj.com/ylzx/202509-5916.html
评论列表(3条)
我是里驹号的签约作者“千旋”
本文概览:网上有关“为什么采用I调节器及PI调节器能实现无静差?”话题很是火热,小编也是针对为什么采用I调节器及PI调节器能实现无静差?寻找了一些与之相关的一些信息进行分析,如果能碰巧解...
文章不错《为什么采用I调节器及PI调节器能实现无静差?》内容很有帮助